
Tackling Deep Software
Variability Together

Mathieu Acher @acherm

Special thanks to Luc Lesoil, Jean-Marc Jézéquel, Juliana Alves Pereira, and Paul Temple

Special thanks to Luc Lesoil, Jean-Marc Jézéquel, Juliana
Alves Pereira, and Paul Temple

SOFTWARE VARIANTS ARE EATING
THE WORLD AND SCIENCE

3

build: OK
8.16 seconds
security:
high

build: failure

build: OK
2.16 seconds
security: low

4

Whole
Population of

Configurations

Performance
Prediction

Training
Sample

Performance
Measurements

Prediction Model

J. Alves Pereira, H. Martin, M. Acher, J.-M. Jézéquel, G. Botterweck and A. Ventresque
<Learning Software Configuration Spaces: A Systematic Literature Review= JSS, 2021

Sampling, Measuring, Learning
Software Configuration Spaces

5

State-of-the-art (SOTA) results: with the right
algorithm and/or sampling strategy, fairly accurate
and interpretable models for many systems and
qualitative/quantitative properties can be derived

Still, why learning-based, SOTA techniques are not
fully adopted and integrated to software-intensive
projects?

● Academic/industry gap?
● Too costly?
● Hard to automatically observe/quantify

variants?
● ….

Learning variability
can be easy…

6

Learning variability can be easy…

hardware variability

operating system
variability

build/compiler
variability

software application
variability

version variability

input data variability… but we’re not looking
deeply.

Prediction models and configuration
knowledge may not generalize (ie
misleading/inaccurate/pointless for developers
and users) if the software evolves, is

compiled differently, a different
hardware is used, input data fed

differs, etc. 7

15,000+ options

thousands of compiler flags
and compile-time options

dozens of preferences

100+ command-line parameters

1000+ feature toggles
8

hardware variability

deep software variability

Age # Cores GPU

RECAP: x264 deep variability

SOFTWARE
Variant

Compil. Version

Version

Option Distrib.

Size Length Res.

Hardware

Operating
System

Software

Input Data

Bug

Perf. ·

Perf. ¸

deep variability Sometimes, variability is
consistent/stable across
layers and knowledge
transfer is immediate.

But there are also
interactions among
variability layers and
variability knowledge
may not generalize

Hardware

Operating
System

Software

Input Data

10.4

x264
--mbtree

...

x264
--no-mbtree

...

x264
--no-mbtree

...

x264
--mbtree

...

20.04

Dell latitude
7400

Raspberry Pi
4 model B

verticalanimation verticalanimation verticalanimation verticalanimation

Duration (s) 22 25 73 726 6 351 359

Size (MB) 28 34 33 2133 21 28 34

A B

21 21

REAL WORLD Example (x264)

REAL WORLD Example (x264)

Hardware

Operating
System

Software

Input Data

10.4

x264
--mbtree

...

x264
--no-mbtree

...

x264
--no-mbtree

...

x264
--mbtree

...

20.04

Dell latitude
7400

Raspberry Pi
4 model B

verticalanimation verticalanimation verticalanimation verticalanimation

Duration (s) 22 25 73 726 6 351 359

Size (MB) 28 34 33 2133 21 28 34

A B

21 21

Hardware

Operating
System

Software

Input Data

10.4

x264
--mbtree

...

x264
--no-mbtree

...

x264
--no-mbtree

...

x264
--mbtree

...

20.04

Dell latitude
7400

Raspberry Pi
4 model B

verticalanimation verticalanimation verticalanimation verticalanimation

Duration (s) 22 25 73 726 6 351 359

Size (MB) 28 34 33 2133 21 28 34

A B

21 21

≈*16

≈*12

REAL WORLD Example (x264)

Age # Cores GPU

RECAP: x264 deep variability

SOFTWARE
Variant

Compil. Version

Version

Option Distrib.

Size Length Res.

Hardware

Operating
System

Software

Input Data

Bug

Perf. ·

Perf. ¸

deep variability

L. Lesoil, M. Acher, A. Blouin and J.-M. Jézéquel,
<Deep Software Variability: Towards
Handling Cross-Layer Configuration= in VaMoS 2021

The <best=/default software
variant might be a bad one.

Influential software options
and their interactions vary.

Performance prediction
models and variability
knowledge may not
generalize

Transferring Performance Prediction Models Across Different Hardware Platforms
Valov et al. ICPE 2017

<Linear model provides a good approximation of
transformation between performance distributions
of a system deployed in different hardware
environments=

what about

variability of

input data?

compile-time options?

version? 14

Transfer Learning for Software Performance Analysis: An Exploratory Analysis
Jamshidi et al. ASE 2017

15

<Analyzing the Impact of Workloads on Modeling the Performance of Configurable Software Systems=
Stefan Mühlbauer et al. ICSE 2023

16

Let’s go deep with input data!

Intuition: video encoder behavior (and thus runtime configurations) hugely depends
on the input video (different compression ratio, encoding size/type etc.)

Is the best software configuration still the best?

Are influential options always influential?

Does the configuration knowledge generalize?

?
YouTube User General Content dataset: 1397 videos
Measurements of 201 soft. configurations (with same hardware,
compiler, version, etc.): encoding time, bitrate, etc. 17

Do x264 software performances
stay consistent across inputs?
● Encoding time: very strong correlations

○ low input sensitivity

● FPS: very strong correlations
○ low input sensitivity

● CPU usage : moderate correlation, a few negative correlations
○ medium input sensitivity

● Bitrate: medium-low correlation, many negative correlations
○ High input sensitivity

● Encoding size: medium-low correlation, many negative correlations
○ High input sensitivity

?

1397 videos x 201 software
configurations

18

Are there some configuration options
more sensitive to input videos? (P = bitrate)

L. Lesoil, M. Acher, A. Blouin and J.-M. Jézéquel <Input sensitivity on the performance of configurable systems an empirical study= JSS 2023
19

Practical impacts for users, developers, scientists, and
self-adaptive systems

Threats to variability knowledge: predicting, tuning, or understanding configurable systems without being
aware of inputs can be inaccurate and… pointless
eg effectiveness of sampling strategies (random, 2-wise, etc.) is input specific (see also Pereira et al. ICPE 2020)

Opportunities: for some performance properties (P) and subject systems, some stability is observed and
performance remains consistent!

L. Lesoil, M. Acher, A. Blouin and J.-M. Jézéquel <Input sensitivity on the
performance of configurable systems an empirical study= JSS 2023

Stefan Mühlbauer, Florian Sattler, Christian Kaltenecker, Johannes Dorn, Sven Apel, Norbert Siegmund <Analyzing the
Impact of Workloads on Modeling the Performance of Configurable Software Systems= ICSE 2023

20

Is there an interplay between compile-time and
runtime options?

L. Lesoil, M. Acher, X. Tërnava, A. Blouin and
J.-M. Jézéquel <The Interplay of Compile-
time and Run-time Options for Performance
Prediction= in SPLC ’21

21

4.13 version (sep 2017): 6%. What about evolution? Can we reuse the 4.13 Linux prediction
model? No, accuracy quickly decreases: 4.15 (5 months after): 20%; 5.7 (3 years after): 35%

322H. Martin, M. Acher, J. A. Pereira, L. Lesoil, J. Jézéquel and D. E. Khelladi, <Transfer learning across
variants and versions: The case of linux kernel size= Transactions on Software Engineering (TSE), 2021

23

What can we do? (#1 studies)
Empirical studies about deep software variability

● more subject systems
● more variability layers, including interactions
● more quantitative (e.g., performance) properties

with challenges for gathering measurements data:

● how to scale experiments? Variant space is huge!
● how to fix/isolate some layers? (eg hardware)
● how to measure in a reliable way?

Expected outcomes:

● significance of deep software variability in the wild
● identification of stable layers: sources of variability that should not affect the conclusion and

that can be eliminated/forgotten
● identification/quantification of sensitive layers and interactions that matter
● variability knowledge

24

What can we do? (#2 cost)
Reducing the cost of exploring the variability spaces

● learning
○ many algorithms/techniques with tradeoffs interpretability/accuracy
○ transfer learning (instead of learning from scratch) Jamshidi et al. ASE’17, ASE’18, Martin et al.

TSE’21

● sampling strategies
○ uniform random sampling? t-wise? distance-based? …
○ sample of hardware? input data?

● incremental build of configurations Randrianaina et al. ICSE’22

● white-box approaches Velez et al. ICSE’21, Weber et al. ICSE’21

● …

25

What can we do? (#3 modelling)

Modelling variability
● Abstractions are definitely needed to…

○ reason about logical constraints and interactions
○ integrate domain knowledge
○ synthesize domain knowledge
○ automate and guide the exploration of variants
○ scope and prioritize experiments

● Challenges:
○ Multiple systems, layers, concerns
○ Different kinds of variability: technical vs domain, accidental vs essential, implicit

vs explicit… when to stop modelling?
○ reverse engineering

26

Open, reproducible science for deep variability
deep.variability.io?

A collaborative resource and place:

● Evidence of Deep Software Variability
● Continuous survey of papers/articles about deep software variability
● Case studies and configuration knowledge associated to software

projects
● Datasets (eg measurements of performance in certain conditions)
● Reproducible scripts (eg for building prediction models)
● Description and results of Innovative solutions (eg transfer learning)

○ content based on already published papers
○ beyond PDFs

Ongoing work (<live= book with jupyter)… Looking for
contributions/ideas/suggestions! 27

eg https://github.com/llesoil/input_sensitivity

28

Tackling Deep Software Variability Together
Mathieu Acher @acherm

29

BACKUP SLIDES

30

(BEYOND x264) Empirical and fundamental question

HOW DOES DEEP
SOFTWARE VARIABILITY
MANIFEST IN THE WILD?

SOFTWARE
SCIENTISTS

should
OBSERVE the

JUNGLE/
GALAXY!

Age # Cores GPU

Variant
Compil. Version

Version

Option Distrib.

Size Length Res.

Hardware

Operating
System

Software

Input Data

Deep Software Variability

4 challenges and opportunities

Luc Lesoil, Mathieu Acher, Arnaud Blouin, Jean-Marc Jézéquel:
Deep Software Variability: Towards Handling Cross-Layer Configuration. VaMoS 2021: 10:1-10:8

Identify the influential layers 1

Age # Cores GPU

VariantCompil. Version

Version

Option Distrib.

Size Length Res.

Hardware

Operating
System

Software

Input Data

Problem
≠ layers,

≠ importances on
performances

Challenge
Estimate their effects

Opportunity
Leverage the useful
variability layers

& variables

2Test & Benchmark environments

0.152.2854 0.155.2917

Problem
Combinatorial explosion and cost

Challenge
Build a

representative, cheap
set of environments

Opportunity
dimensionality reduction

Hardware

Operating
System

Software

Input Data

Transfer performances across environments

10.420.04

Dell latitude
7400

Raspberry Pi
4 model B

A B

?
Problem

Options’ importances
change with environments

Challenge
Transfer performances

 across environments

Opportunity
Reduce cost of measure

3

Cross-Layer Tuning

Age # Cores GPU

VariantCompil. Version

Version

Option Distrib.

Size Length Res.

Hardware

Operating
System

Software

Input Data

4

Problem
(Negative) interactions

of layers

Challenge
Find & fix values to improve

performances

Opportunity
Specialize the environment

for a use case

Bug

Perf. ·

Perf. ¸

CHALLENGES for Deep Software Variability

Identify the influential layers

Test & Benchmark environments

Transfer performances across environments

Cross-Layer Tuning

x264 video encoder (compilation/build)

compile-time
options

38

Key results (for x264)
Worth tuning software at compile-time: gain about 10 % of execution time with the
tuning of compile-time options (compared to the default compile-time configuration).
The improvements can be larger for some inputs and some runtime configurations.

Stability of variability knowledge: For all the execution time distributions of x264
and all the input videos, the worst correlation is greater than 0.97. If the compile-time
options change the scale of the distribution, they do not change the rankings of
run-time configurations (i.e., they do not truly interact with the run-time options).

Reuse of configuration knowledge:

● Linear transformation among distributions
● Users can also trust the documentation of run-time options,

consistent whatever the compile-time configuration is.

L. Lesoil, M. Acher, X. Tërnava, A. Blouin and
J.-M. Jézéquel <The Interplay of Compile-
time and Run-time Options for Performance
Prediction= in SPLC ’21

39

Key results (for x264)
First good news: Worth tuning software at compile-time!

Second good news: For all the execution time distributions of x264 and all the input videos, the worst
correlation is greater than 0.97. If the compile-time options change the scale of the distribution, they do not
change the rankings of run-time configurations (i.e., they do not truly interact with the run-time options).

It has three practical implications:

1. Reuse of configuration knowledge: transfer learning of prediction models boils down to apply a linear
transformation among distributions. Users can also trust the documentation of run-time options,
consistent whatever the compile-time configuration is.

2. Tuning at lower cost: finding the best compile-time configuration among all the possible ones allows
one to immediately find the best configuration at run time. We can remove away one dimension!

3. Measuring at lower cost: do not use a default compile-time configuration, use the less costly once since
it will generalize!

Did we recommend to use two binaries? YES, one for measuring, another for reaching optimal
performances!

interplay between
compile-time and runtime
options and even input!

L. Lesoil, M. Acher, X. Tërnava, A. Blouin and
J.-M. Jézéquel <The Interplay of Compile-
time and Run-time Options for Performance
Prediction= in SPLC ’21

40

Are there some configuration options
more sensitive to input videos? (bitrate)

41

● Linux as a subject software system (not as an OS interacting with other layers)

● Targeted non-functional, quantitative property: binary size
○ interest for maintainers/users of the Linux kernel (embedded systems, cloud, etc.)
○ challenging to predict (cross-cutting options, interplay with compilers/build

systems, etc/.)
● Dataset: version 4.13.3 (september 2017), x86_64 arch,

measurements of 95K+ random configurations
○ paranoiac about deep variability since 2017, Docker to control the build

environment and scale
○ diversity of binary sizes: from 7Mb to 1.9Gb
○ 6% MAPE errors: quite good, though costly…

242

H. Martin, M. Acher, J. A. Pereira, L. Lesoil, J. Jézéquel and D. E. Khelladi, <Transfer learning across variants
and versions: The case of linux kernel size= Transactions on Software Engineering (TSE), 2021

Transfer learning to the rescue
● Mission Impossible: Saving variability knowledge and

prediction model 4.13 (15K hours of computation)

● Heterogeneous transfer learning: the feature space is
different

● TEAMS: transfer evolution-aware model shifting

543

H. Martin, M. Acher, J. A. Pereira, L. Lesoil, J. Jézéquel and D. E. Khelladi, <Transfer learning across variants
and versions: The case of linux kernel size= Transactions on Software Engineering (TSE), 2021

343

Joelle Pineau <Building Reproducible, Reusable, and Robust Machine Learning Software= ICSE’19 keynote <[...] results
can be brittle to even minor perturbations in the domain or experimental procedure=

What is the magnitude of the effect
hyperparameter settings can have on baseline
performance?

How does the choice of network architecture for
the policy and value function approximation affect
performance?

How can the reward scale affect results?

Can random seeds drastically alter performance?

How do the environment properties affect
variability in reported RL algorithm performance?

Are commonly used baseline implementations
comparable? 44

<Neuroimaging pipelines are known to generate different results
depending on the computing platform where they are compiled and
executed.=

Statically building programs improves reproducibility across OSes, but small
differences may still remain when dynamic libraries are loaded by static
executables[...]. When static builds are not an option, software heterogeneity might
be addressed using virtual machines. However, such solutions are only
workarounds: differences may still arise between static executables built on
different OSes, or between dynamic executables executed in different VMs.

Reproducibility of neuroimaging
analyses across operating systems,
Glatard et al., Front. Neuroinform., 24
April 2015

45

Deep Questions?

