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SOFTWARE VARIANTS ARE EATING 
THE WORLD AND SCIENCE
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J. Alves Pereira, H. Martin, M. Acher, J.-M. Jézéquel, G. Botterweck and A. Ventresque 
<Learning Software Configuration Spaces: A Systematic Literature Review= JSS, 2021

Sampling, Measuring, Learning 
Software Configuration Spaces
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State-of-the-art (SOTA) results: with the right 
algorithm and/or sampling strategy, fairly accurate 
and interpretable models for many systems and 
qualitative/quantitative properties can be derived

Still, why learning-based, SOTA techniques are not 
fully adopted and integrated to software-intensive 
projects? 

● Academic/industry gap? 
● Too costly? 
● Hard to automatically observe/quantify 

variants?
● …. 

Learning variability 
can be easy…
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Learning variability can be easy…

hardware variability

operating system 
variability

build/compiler 
variability

software application 
variability

version variability

input data variability… but we’re not looking 
deeply. 

Prediction models and configuration 
knowledge may not generalize (ie 
misleading/inaccurate/pointless for developers 
and users) if the software evolves, is 

compiled differently, a different 
hardware is used, input data fed 

differs, etc. 7



15,000+ options

thousands of compiler flags 
and compile-time options

dozens of preferences

100+ command-line parameters

1000+ feature toggles
8

hardware variability

deep software variability
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deep variability Sometimes, variability is 
consistent/stable across 
layers and knowledge 
transfer is immediate.

But there are also 
interactions among 
variability layers and 
variability knowledge 
may not generalize
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L. Lesoil, M. Acher, A. Blouin and J.-M. Jézéquel, 
<Deep Software Variability: Towards
Handling Cross-Layer Configuration= in VaMoS 2021

The <best=/default software 
variant might be a bad one. 

Influential software options 
and their interactions vary.

Performance prediction 
models and variability 
knowledge may not 
generalize



Transferring Performance Prediction Models Across Different Hardware Platforms
Valov et al. ICPE 2017

<Linear model provides a good approximation of 
transformation between performance distributions 
of a system deployed in different hardware 
environments=

what about 

variability of 

input data?

compile-time options? 

version? 14



Transfer Learning for Software Performance Analysis: An Exploratory Analysis 
Jamshidi et al. ASE 2017
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<Analyzing the Impact of Workloads on Modeling the Performance of Configurable Software Systems= 
Stefan Mühlbauer et al.  ICSE 2023
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Let’s go deep with input data! 

Intuition: video encoder behavior (and thus runtime configurations) hugely depends 
on the input video (different compression ratio, encoding size/type etc.)

Is the best software configuration still the best? 

Are influential options always influential? 

Does the configuration knowledge generalize?

?
YouTube User General Content dataset: 1397 videos
Measurements of 201 soft. configurations (with same hardware, 
compiler, version, etc.): encoding time, bitrate, etc. 17



Do x264 software performances 
stay consistent across inputs?
● Encoding time:  very strong correlations

○ low input sensitivity

● FPS: very strong correlations
○ low input sensitivity

● CPU usage : moderate correlation, a few negative correlations
○ medium input sensitivity

● Bitrate: medium-low correlation, many negative correlations
○ High input sensitivity

● Encoding size: medium-low correlation, many negative correlations
○ High input sensitivity

? 

1397 videos x 201 software 
configurations 
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Are there some configuration options 
more sensitive to input videos? (P = bitrate)

L. Lesoil, M. Acher, A. Blouin and J.-M. Jézéquel <Input sensitivity on the performance of configurable systems an empirical study= JSS 2023
19



Practical impacts for users, developers, scientists, and 
self-adaptive systems

Threats to variability knowledge: predicting, tuning, or understanding configurable systems without being 
aware of inputs can be inaccurate and… pointless
eg effectiveness of sampling strategies (random, 2-wise, etc.) is input specific (see also Pereira et al. ICPE 2020)

Opportunities: for some performance properties (P) and subject systems, some stability is observed and 
performance remains consistent!

L. Lesoil, M. Acher, A. Blouin and J.-M. Jézéquel <Input sensitivity on the 
performance of configurable systems an empirical study= JSS 2023

Stefan Mühlbauer, Florian Sattler, Christian Kaltenecker, Johannes Dorn, Sven Apel, Norbert Siegmund <Analyzing the 
Impact of Workloads on Modeling the Performance of Configurable Software Systems= ICSE 2023
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Is there an interplay between compile-time and 
runtime options?

L. Lesoil, M. Acher, X. Tërnava, A. Blouin and 
J.-M. Jézéquel <The Interplay of Compile-
time and Run-time Options for Performance 
Prediction= in SPLC ’21
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4.13 version (sep 2017): 6%. What about evolution? Can we reuse the 4.13 Linux prediction 
model? No, accuracy quickly decreases: 4.15 (5 months after): 20%; 5.7 (3 years after): 35%

322H. Martin, M. Acher, J. A. Pereira, L. Lesoil, J. Jézéquel and D. E. Khelladi, <Transfer learning across 
variants and versions: The case of linux kernel size= Transactions on Software Engineering (TSE), 2021



23



What can we do? (#1 studies)
Empirical studies about deep software variability

● more subject systems
● more variability layers, including interactions
● more quantitative (e.g., performance) properties

with challenges for gathering measurements data:

● how to scale experiments? Variant space is huge!
● how to fix/isolate some layers? (eg hardware)
● how to measure in a reliable way? 

Expected outcomes:

● significance of deep software variability in the wild
● identification of stable layers: sources of variability that should not affect the conclusion and 

that can be eliminated/forgotten
● identification/quantification of sensitive layers and interactions that matter
● variability knowledge
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What can we do? (#2 cost)
Reducing the cost of exploring the variability spaces

● learning
○ many algorithms/techniques with tradeoffs interpretability/accuracy
○ transfer learning (instead of learning from scratch) Jamshidi et al. ASE’17, ASE’18, Martin et al. 

TSE’21

● sampling strategies
○ uniform random sampling? t-wise? distance-based? …
○ sample of hardware? input data? 

● incremental build of configurations Randrianaina et al. ICSE’22

● white-box approaches Velez et al. ICSE’21, Weber et al. ICSE’21

● …
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What can we do? (#3 modelling)

Modelling variability
● Abstractions are definitely needed to… 

○ reason about logical constraints and interactions
○ integrate domain knowledge 
○ synthesize domain knowledge 
○ automate and guide the exploration of variants
○ scope and prioritize experiments

● Challenges:
○ Multiple systems, layers, concerns
○ Different kinds of variability: technical vs domain, accidental vs essential, implicit 

vs explicit… when to stop modelling? 
○ reverse engineering

26



Open, reproducible science for deep variability
deep.variability.io?

A collaborative resource and place: 

● Evidence of Deep Software Variability 
● Continuous survey of papers/articles about deep software variability
● Case studies and configuration knowledge associated to software 

projects
● Datasets (eg measurements of performance in certain conditions) 
● Reproducible scripts (eg for building prediction models)
● Description and results of Innovative solutions (eg transfer learning)

○ content based on already published papers
○ beyond PDFs

Ongoing work (<live= book with jupyter)… Looking for 
contributions/ideas/suggestions! 27



eg https://github.com/llesoil/input_sensitivity
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Tackling Deep Software Variability Together
Mathieu Acher @acherm 
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BACKUP SLIDES
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(BEYOND x264) Empirical and fundamental question

HOW DOES DEEP 
SOFTWARE VARIABILITY 
MANIFEST IN THE WILD?

SOFTWARE 
SCIENTISTS 

should 
OBSERVE the 

JUNGLE/
GALAXY!
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Deep Software Variability

4 challenges and opportunities

Luc Lesoil, Mathieu Acher, Arnaud Blouin, Jean-Marc Jézéquel:
Deep Software Variability: Towards Handling Cross-Layer Configuration. VaMoS 2021: 10:1-10:8



Identify the influential layers 1
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2Test & Benchmark environments

0.152.2854 0.155.2917

Problem
Combinatorial explosion and cost

Challenge
Build a 

representative, cheap 
set of environments

Opportunity
dimensionality reduction

Hardware

Operating
System

Software

Input Data



Transfer performances across environments

10.420.04

Dell latitude 
7400

Raspberry Pi
4 model B

A B

?
Problem

Options’ importances 
change with environments

Challenge
Transfer performances

 across environments

Opportunity
Reduce cost of measure
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Cross-Layer Tuning
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CHALLENGES for Deep Software Variability

Identify the influential layers

Test & Benchmark environments

Transfer performances across environments

Cross-Layer Tuning



x264 video encoder (compilation/build)

compile-time 
options

38



Key results (for x264)
Worth tuning software at compile-time: gain about 10 % of execution time with the 
tuning of compile-time options (compared to the default compile-time configuration). 
The improvements can be larger for some inputs and some runtime configurations. 

Stability of variability knowledge: For all the execution time distributions of x264 
and all the input videos, the worst correlation is greater than 0.97. If the compile-time 
options change the scale of the distribution, they do not change the rankings of 
run-time configurations (i.e., they do not truly interact with the run-time options). 

Reuse of configuration knowledge: 

● Linear transformation among distributions 
● Users can also trust the documentation of run-time options, 

consistent whatever the compile-time configuration is.

L. Lesoil, M. Acher, X. Tërnava, A. Blouin and 
J.-M. Jézéquel <The Interplay of Compile-
time and Run-time Options for Performance 
Prediction= in SPLC ’21

39



Key results (for x264)
First good news: Worth tuning software at compile-time! 

Second good news: For all the execution time distributions of x264 and all the input videos, the worst 
correlation is greater than 0.97. If the compile-time options change the scale of the distribution, they do not 
change the rankings of run-time configurations (i.e., they do not truly interact with the run-time options). 

It has three practical implications:

1. Reuse of configuration knowledge: transfer learning of prediction models boils down to apply a linear 
transformation among distributions. Users can also trust the documentation of run-time options, 
consistent whatever the compile-time configuration is.

2. Tuning at lower cost: finding the best compile-time configuration among all the possible ones allows 
one to immediately find the best configuration at run time. We can remove away one dimension!

3. Measuring at lower cost: do not use a default compile-time configuration, use the less costly once since 
it will generalize! 

Did we recommend to use two binaries? YES, one for measuring, another for reaching optimal 
performances!

interplay between 
compile-time and runtime 
options and even input!

L. Lesoil, M. Acher, X. Tërnava, A. Blouin and 
J.-M. Jézéquel <The Interplay of Compile-
time and Run-time Options for Performance 
Prediction= in SPLC ’21
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Are there some configuration options 
more sensitive to input videos? (bitrate)
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● Linux as a subject software system (not as an OS interacting with other layers) 

● Targeted non-functional, quantitative property: binary size 
○ interest for maintainers/users of the Linux kernel (embedded systems, cloud, etc.)
○ challenging to predict (cross-cutting options, interplay with compilers/build 

systems, etc/.)
● Dataset: version 4.13.3 (september 2017), x86_64 arch, 

measurements of 95K+ random configurations
○ paranoiac about deep variability since 2017, Docker to control the build 

environment and scale 
○ diversity of binary sizes: from 7Mb to 1.9Gb
○  6% MAPE errors: quite good, though costly…

242

H. Martin, M. Acher, J. A. Pereira, L. Lesoil, J. Jézéquel and D. E. Khelladi, <Transfer learning across variants 
and versions: The case of linux kernel size= Transactions on Software Engineering (TSE), 2021



Transfer learning to the rescue
● Mission Impossible: Saving variability knowledge and 

prediction model 4.13 (15K hours of computation)

● Heterogeneous transfer learning: the feature space is 
different

● TEAMS: transfer evolution-aware model shifting

543

H. Martin, M. Acher, J. A. Pereira, L. Lesoil, J. Jézéquel and D. E. Khelladi, <Transfer learning across variants 
and versions: The case of linux kernel size= Transactions on Software Engineering (TSE), 2021
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Joelle Pineau <Building Reproducible, Reusable, and Robust Machine Learning Software= ICSE’19 keynote <[...] results 
can be brittle to even minor perturbations in the domain or experimental procedure=

What is the magnitude of the effect 
hyperparameter settings can have on baseline 
performance?

How does the choice of network architecture for 
the policy and value function approximation affect 
performance?

How can the reward scale affect results? 

Can random seeds drastically alter performance?
 
How do the environment properties affect 
variability in reported RL algorithm performance?

Are commonly used baseline implementations 
comparable? 44



<Neuroimaging pipelines are known to generate different results 
depending on the computing platform where they are compiled and 
executed.=

Statically building programs improves reproducibility across OSes, but small 
differences may still remain when dynamic libraries are loaded by static 
executables[...]. When static builds are not an option, software heterogeneity might 
be addressed using virtual machines. However, such solutions are only 
workarounds: differences may still arise between static executables built on 
different OSes, or between dynamic executables executed in different VMs. 

Reproducibility of neuroimaging 
analyses across operating systems, 
Glatard et al., Front. Neuroinform., 24 
April 2015
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Deep Questions?


