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SOEFTWARE VARIANTS ARE EATING
THE WORLD AND SCIENCE
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Sampling, Measuring, Learning
Software Configuration Spaces
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State-of-the-art (SOTA) results: with the right
algorithm and/or sampling strategy, fairly accurate
and interpretable models for many systems and
qualitative/quantitative properties can be derived

Still, why learning-based, SOTA techniques are not
fully adopted and integrated to software-intensive

projects?

Learning variahility
can he easy...

Academic/industry gap?
Too costly?

Hard to automatically observe/quantify

variants?

References Name Domain Non-Functional Properties

[61.87] Wget Data transfer memory footprint, code complexity

[106] Actian Vector Database system runtime

[41] Apache Cassandra  Database system latency

[27, 29, 42, 48, 61. Berkeley DB Database system UO time, memory footprint. perfor-

62, 66, B0, B4-89, 95, mance, response time, code com-

118. 119] plexity, maintainability, binary size

[89] FAME-DBMS Database system maintamability, binary size, perfor-
mance

[93. 106, 117, 120]  MySQL Database system defects, throughput, latency

[106) Postgres Database system throughput, latency

[86-88] Prevayler Database system memory footprint, performance

[27. 29, 39, 47, 61. SQLite Database system memory footprint, performance, re-

62, 80, 85-87, 87, 88, sponse time, code complexity. run-

98, 105] time:

[15] StockOnline Database system response time

[10] Kafka Distributed systems throughput

(25} DNN DNNs algorithms accuracy of predictions

[3] Curriculum vitae  Document number of pages

13] Paper Document number of pages

[20] RUBIS E-commerce application  response time

[91] EMAIL E-mail client time

[47) MBED TLS Encryption library response time

[110] SAT ERP Enterprise Application  response time

[63] noc-CM-log FPGA CPU power consumption. runtime

[63] sort-256 FPGA area, throughput

|23} E-Health System  Health response time

[29. 42. 84, 98] HIPA™ Image processing response time

[17] Disparity SPL Image processing energy consumption

|86-58] PKJab Instant messenger memory footprint, performance

[36] [BM ILOG CPLEX  Integer solver runtime

[110} SPECjjbb2005 Java Server response time, throughput

[o1] WEKA Learning algorithm aceuracy of predictions

18] SVD Linear algebra execution time and accuracy

[63] Trimesh Mesh solver iterations. responsce time

|91} MBENCH Micro benchmark time

[73. 116] ACE+TAO system  Middleware software defects

[B6-88) SensorNetwork Network simulator memory footprint, performance

[109]) Simonstrator Network simulator latency

[121] NoC Network-based system  energy and runtime

18] Helmholtz 3D Numerical analysis execution time and accuracy

(18] Poisson 2D Numerical analysis execution ime and accuracy

[86-88. 92] Linux kernel Operating system memory footprint, performance

[40] DNN Optimi algorithm i) time

[55] Art system Paint user likeability

[26] Multigrid system  Equations solving time of each interaction

[41] CoBaot System Rabotic system CPU usage

|42, 84, 98| JavaGC Runtime environment response lime

[96] Robot Runtime environment  energy consumption and execution
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Learning variabhbility can bhe easy...

software application
variability

“é‘,.’«"

.. but we're not
deeply.

input data variability

4 build/compiler

R —
. : : . variabilit
Prediction models and configuration “"o,, .
knowledge may not generalize (ie o8
O

misleading/inaccurate/pointless for developers
and users) If the software evolves, is
compiled differently, a different
hardware is used, input data fed
differs, etc.

6,)/
operating system
variability

hardware variabilify



deep software variability
hardware variability

15,000+ options

thousands of compiler flags
and compile-time options

dozens of preferences

100+ command-line parameters

1000+ feature toggles

8




DEEP VARIABILITY
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Sometimes, variability is
consistent/stable across
layers and knowledge
transfer is immediate.
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he “best”/default software
variant might be a bad one.
Influential software options
and their interactions vary.
Performance prediction
models and variabilit

knowledge may not

PERF. /

L. Lesoil, M. Acher, A. Blouin and J.-M. Jézéquel,
“Deep Software Variability: Towards
Handling Cross-Layer Configuration” in VaMoS 2021




Transferring Performance Prediction Models Across Different Hardware Platforms
Valov et al. ICPE 2017

Table 3: Summary of measured systems; Ny — Num-

“Linear model provides a good approximation of

systems were measured; NMC — Number of mea-

transformation between performance distributions

System Ny
7 154

XZ

x264 7 11 165 H 'ff t h d
s L 0 of a system deployed in different hardware
Table 2: Summary of hardware platforms on which = LL)
configurable software systems were measured; MID e nVI ro n m e nts
— Machine ID in DataMill cluster; NC — Number of
CPUSs; IS — Instruction set; CCR — CPU clock rate
(MHz); RAM — RAM memory size (MB)
Systems Machines
XZ x264 SQLite MID NC IS CCR RAM
v 73 2 1686 1733 1771
v v v 75 2 i686 3200 977
v 77 2 i686 2992 2024
v 78 1 686 1495 755 ¥ X v
v 79 4 x86.64 3291 7961 h t b t - — \ \ a®
v 80 8 x86.64 3401 7907 W a a ou OPERATING .t
v v 81 16 x86.64 2411 32193 S ! J. /
A v ¢ L g e . oge YSTEM VERSION / OpTION / DIsTRIB. /
88 1686 7 978
" BN I B variability o
v 91 1 1686 2400 1009 d
v 97 2 i686 2992 873 R ( .{)
v v 98 2 i686 2092 873 e { ’
v 99 2 i686 2793 880 In p ut d ata ? SOFTWARE (’% 2
i 103 v j6s6 4200 -anl COMPIL. VARIANT VERSION
v 104 1 1686 1800 502
v v 105 2 1686 3200 |81 = = =
/ w2 e oo w | COMPIle-time options?
v 125 1 x86.64 3301 7960
v 128 2 i686 2993 2024
v 130 2 1686 3198 880 o ?
v 146 2 686 2908 872 version:
v 157 36 x86.64 2301 15954




Transfer Learning for Software Performance Analysis: An Exploratory Analysis
Jamshidi et al. ASE 2017

SPEAR (SAT Solver) X264 (video encoder) SQLite (DB engine) SaC (Compiler)
Analysis time Encoding time Query time Execution time
14 options 16 options 14 options 50 options
16,384 configurations 4,000 configurations 1,000 configurations 71,267 configurations
SAT problems Video quality/size DB Queries 10 Demo programs
3 hardware 2 hardware 2 hardware
2 versions 3 versions 2 versions

ecy : [hy = hy,ws, vs) SM 097

ecy : [hy = hy,wy, vl S 0.96

ecy : [hy,uy — wa, vs) M 0.65

ecy : [hy.wy — ws,v3) M 0.67

ecs @ [hy ws. vo — v3] L 0.05

ecs : [hy, ws. vy — vs) L 0.06

ecy : [hy, wy — wg, v2 — vs) L 0.08

ecs : [ha — hy,wy = wy,ve — vg] VL 0.09

Insight. For non-severe hardware changes, we can linearly
transfer performance models across environments.

=N
Insight. The strength of the influence of configuration f SOFTWARE , i
options is typically preserved across environments.

Insight. A large percentage of configurations are typically
invalid in both source and target environments.




“Analyzing the Impact of Workloads on Modeling the Performance of Configurable Software Systems”

Stefan Muhlbauer et al.

Summary (RQ),): Varying the workload causes a substantial
amount of variation among performance distributions. Across
workloads, we observed mostly linear (for six of the nine
subject systems), but to a large extent, also non-monotonous

ICSE 2023

relationships (for three of the nine subject systems).

Summary (RQ,): Workloads can affect performance in-
fluences of configuration options in various ways (e.g.,
conditioning influence, introducing variance, having outliers).
We can correlate some variation of performance influences
with workload characteristics, yet identifying relevant work-

load characteristics is highly domain-

considered trivial.

specific and cannot be

Table IV: Common top five influential configuration options
among pairs of workloads.

System Workload 1 Workload 2 # Common
JUMP3R helix.wav sweep.wav 2
KANZI vmlinux fannie_mae_S00k |
DCONVERT  jpeg-small svg-large 2
H2 tpee-2 tpec-8 3
BATIK village cubus 4
Xz deepfield silesia 4
LRZIP artificl uig-32-bin 3
X264 sd_crew_cif_short  sd_city_dcif_short 4
z3 QF_NRA_hong 9 QF_BV_bench_935 3
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OPTIMIZE_DISTINCT
REUSE_SPACE
IGNORE_CATALOGS
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COMPRESS 1
RECOMPILE_ALWAYS
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Let’s go deep with input data!

Y
Intuition: video encoder behavior (and thus runtime configurations) hugely depends
on the input video (different compression ratio, encoding size/type etc%

Is the best software configuration still the best?

Are influential options always influential?

Does the configuration knowledge generalize? s
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YouTube User General Content dataset: 1397 videos




Do x264 software performances
stay consistent across inputs?

1397 videos x 201 software

® Encoding time: very strong correlations configurations

O low input sensitivity

® FPS: very strong correlations

O low input sensitivity

® CPU usage : moderate correlation, a few negative correlations

® Bitrate: medium-low correlation, many negative correlations
O High input sensitivity
® Encoding size: medium-low correlation, many negative correlations

?

two performance models f; and f> ﬁ = IB )(_fz + - 18

O High input sensitivity



Are there some configuration options
more sensitive to input videos? (P = bitrate)
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L. Lesoil, M. Acher, A. Blouin and J.-M. Jézéquel “Input sensitivity on the performance of configurable systems an empirical study” JS1892023



Practical impacts for users, developers, scientists, and
self-adaptive systems

Threats to variability knowledge: predicting, tuning, or understanding configurable systems without being
aware of inputs can be inaccurate and... pointless

eg effectiveness of sampling strategies (random, 2-wise, etc.) is input specific (see also Pereira et al. ICPE 2020)

Opportunities: for some performance properties (P) and subject systems, some stability is observed and
performance remains consistent!

Stefan Muhlbauer, Florian Sattler, Christian Kaltenecker, Johannes Dorn, Sven Apel, Norbert Siegmund “Analyzing the
Impact of Workloads on Modeling the Performance of Configurable Software Systems” ICSE 2023
-
Insight: Workload sensitivity challenges the robustness and 0|
generalizability of single-workload performance models, yet %
it is neglected in state-of-the-art approaches. Worse, robust 39 | ‘ S

techniques using only rankings or relative importance of = #Cores

)
. . . ~ . . . 50
options are inapplicable for certain workload variations. o7

5 L
System #M Performance(s) P Docker | Dataset ( OPERATING
gee 2400 size, ctime, exec Link Link
ecc size, ctime, exec T in SYSTEM ’

ImageMagick 100 000 size, time Link Link
lingeling 35100 #confl., #reduc. Link Link
nodelS 96 950 #operations /s [ ILink Link s ...
B poppler 23 680 size, time Tink | |Link |
SQLite 7500 15 query Gimes ql-qls | Link Link ! SOFTWARE
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X7 1140 size, Lime Link Link

L. Lesoil, M. Acher, A. Blouin and J.-M. Jézéquel “Input sensitivity on the
performance of configurable systems an empirical study” JSS 2023




Is there an interplay between compile-time and
runtime options?

L. Lesoil, M. Acher, X. Témava, A. Blouin and
J.-M. Jézéquel “The Interplay of Compile-

M git clone https://github.com/mirror/x264 time and I?l_m—tlme O,ptIOI']S for Performance
. wL Prediction” in SPLC ’21
v 7 Y
COMP ife Jconfigure [~~enable-asm] .. Iconfigure --disable-asm ..
010 make make
E]l=> 336
Run
— Ix264 --me tesa %264 --me umh /%264 --me tesa Ix264 --me umh
_ 4 4 4 4
U‘.e 106 d 34 ds 815 ds 259 d
% ¢ B OPERATIN
: ’E) ..l,l .6 seconds secon secon seconds ( = ’
This paper investigates how compile-time options can affect software [ SorTwaRE |

performances and how compile-time options interact with run-time options.

Figure 1: Cross-layer variability of x264




T _” Version | Release Date | LOC | Files | Examples | Seconds/config | Options | Features | Deleted features | New features | ACommits | Files changes

4.13 2017/09/03 16,616,534 | 60,530 92,562 not available 12,776 9,468 - - - -

4.15 2018/01/28 17,073,368 | 62,249 39,391 not available 12,998 9,425 342 299 31,052 934,628
420 2018/12/23 17,526,171 | 62,423 23,489 225 13,533 10,189 468 1,189 104,691 1,972,020
5.0 2019/03/03 17,679,372 | 63,076 19,952 247 13,673 10,293 494 1,319 118,778 2,170,935
54 2019/10/24 19,358,903 | 67,915 25,847 285 14,159 10,813 663 2,008 181,308 3,827,025
5.7 2020/05/31 19,358,903 | 67,915 20,159 258 14,586 11,338 715 2,585 225,804 4,393,117
5.8 2020/08/02 19,729,197 | 69,303 21,923 289 14,817 11,530 730 2,792 242,381 4,681,313

Table I: Dataset properties for each version. The number of deleted/new features, delta commits, files changes are w.r.t. 4.13.

4.13 version (sep 2017): 6%. What about evolution? can we reuse the 4.13 Linux prediction
model? No, accuracy quickly decreases: 4.15 (5 months after): 20%; 5.7 (3 years after): 35%

Error variation on different versions

—eo— Reuse with 85k 4.13
—a— Reuse with 20k 4.13

+— Reuse with 15k 4.15

—¥— Reuse with 15k 4.20
—+— Reuse with 15k 5.0
0 —e— Reuse with 15k 5.4

—&— Reuse with 15k 5.7
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H. Martin, M. Acher, J. A. Pereira, L. Lesoil, J. Jézéquel and D. E. Khelladi, “Transfer learning across
variants and versions: The case of linux kernel size” Transactions on Software Engineering (TSE), 2021
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What can we do? (#1 studies)

Empirical studies about deep software variability

DEEP VARIABILITY

e more subject systems
e more variability layers, including interactions
e more quantitative (e.g., performance) properties

with challenges for gathering measurements data:

e how to scale experiments? Variant space is huge!
e how to fix/isolate some layers? (eg hardware)
e how to measure in a reliable way?

Expected outcomes:

e significance of deep software variability in the wild

e identification of stable layers: sources of variability that should not affect the conclusion and
that can be eliminated/forgotten

e identification/quantification of sensitive layers and interactions that matter

e variability knowledge »



What can we do? (#2 cost)

Reducing the cost of exploring the variability spaces

e learning
o many algorithms/techniques with tradeoffs interpretability/accuracy

o transfer learning (instead of learning from scratch) Jamshidi et al. ASE’17, ASE’18, Martin et al.
TSE'21

e sampling strategies
o uniform random sampling? t-wise? distance-based? ...
o sample of hardware? input data?

e incremental build of configurations Randrianaina et al. ICSE’22
e Wwhite-box approaches velez et al. ICSE’21, Weber et al. ICSE’21

25



What can we do? (#3 modelling)

o O O O O

DEEP VARIABILITY

Modelling variability o () @

e Abstractions are definitely needed to... { oreeme )

SYSTEM
S ey

reason about logical constraints and interactions
integrate domain knowledge [ sorware |
synthesize domain knowledge

automate and guide the exploration of variants
scope and prioritize experiments

e Challenges:

©)
©)

Multiple systems, layers, concerns

Different kinds of variability: technical vs domain, accidental vs essential, implicit
vs explicit... when to stop modelling?

reverse engineering

26



Open, reproducible science for deep variability

deep.variability.io?
A collaborative resource and place:

e Evidence of Deep Software Variability
e Continuous survey of papers/articles about deep software varlablllty
e Case studies and configuration knowledge associated to software
projects
e Datasets (eg measurements of performance in certain conditions)
Reproducible scripts (eg for building prediction models)
e Description and results of Innovative solutions (eg transfer learning)
o content based on already published papers
o beyond PDFs

Ongoing work (“live” book with jupyter)... Looking for
contributions/ideas/suggestions! 27
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Sampling, Measuring, Learning
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(BEYOND x264) EMPIRICAL AND FUNDAMENTAL QUESTION

HOW DOES DEEP
SOFTWARE VARIABILITY

MANIFEST IN THE WILD?
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DEeEP SOFTWARE VARIABILITY

L4 CHALLENGES AND OPPORTUNITIES

Luc Lesoil, Mathieu Acher, Arnaud Blouin, Jean-Marc Jézéquel:
Deep Software Variability: Towards Handling Cross-Layer Configuration. VaMoS 2021: 10:1-10:8
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CHALLENGES For DEepP SOFTWARE VARIABILITY

IDENTIFY THE INFLUENTIAL LAYERS

TEST & BENCHMARK ENVIRONMENTS

TRANSFER PERFORMANCES ACROSS ENVIRONMENTS

Cross—LAYER TUNING
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x264 video encoder (compilation/build)

--disable-thread
disable-win32thread
--disable-interlaced
-=bit-depth=BIT_DEPTH
--chroma-format=FORMAT

Advanced options:
--disable-asm
--enable-1lto
--enable-debug
--enable-gprof
--enable-strip
--enable-pic

Cross-compilation:
--host=HOST
--cross-prefix=PREFIX

sysroot=SYSROOT

External library support:

disable-avs
--disable-swscale
--disable-lavf
-~disable-ffms
--disable-gpac
--disable-lsmash

localhost.localdomain

disable multithreaded encoding

disable win32threads (windows only)

disable interlaced encoding support

set output bit depth (8, 10, all) [all]

output chroma format (400, 420, 422, 444, all) [all]

disable platform-specific assembly optimizations
enable link-time optimization

add -g
add -pg
add -s

build position-independent code

build programs to run on HOST
use PREFIX for compilation tools
root of cross-build tree

compile-time
options

disable avisynth support
disable swscale support
disable Libavformat support
disable ffmpegsource support
disable gpac support

disable lsmash support

[

OPERATING

SYSTEM

CompiL.

# Cores /
OPTION

[264) |

DisTRIB.

VERSION




L. Lesoil, M. Acher, X. Térnava, A. Blouin and
J.-M. Jézéquel “The Interplay of Compile-
time and Run-time Options for Performance
Prediction” in SPLC "21

Key results (for x264)

Worth tuning software at compile-time: gain about 10 % of execution time with the
tuning of compile-time options (compared to the default compile-time configuration).
The improvements can be larger for some inputs and some runtime configurations.

Stability of variability knowledge: For all the execution time distributions of x264
and all the input videos, the worst correlation is greater than 0.97. If the compile-time
options change the scale of the distribution, they do not change the rankings of
run-time configurations (i.e., they do not truly interact with the run-time options).

Reuse of configuration knowledge: f1 = ,B sz =

e Linear transformation among distributions
e Users can also trust the documentation of run-time options,

consistent whatever the compile-time configuration is.
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Are there some configuration options
more sensitive to input videos? (bitrate)
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H. Martin, M. Acher, J. A. Pereira, L. Lesoil, J. Jézéquel and D. E. Khelladi, “Transfer learning across variants
and versions: The case of linux kernel size” Transactions on Software Engineering (TSE), 2021

e Linux as a subject software system (not as an OS interacting with other layers)

e Targeted non-functional, quantitative property: binary size
o interest for maintainers/users of the Linux kernel (embedded systems, cloud, etc.)
o challenging to predict (cross-cutting options, interplay with compilers/build
systems, etc/.)

e Dataset: version 4.13.3 (september 2017), x86_64 arch,

measurements of 95K+ random configurations
o paranoiac about deep variability since 2017, Docker to control the build
environment and scale
o diversity of binary sizes: from 7Mb to 1.9Gb
o 6% MAPE errors: quite good, though costly... LOZiEEZTL“ ]

/ SOFT;VARE ’




H. Martin, M. Acher, J. A. Pereira, L. Lesoil, J. Jézéquel and D. E. Khelladi, “Transfer learning across variants
and versions: The case of linux kernel size” Transactions on Software Engineering (TSE), 2021

Transfer learning to the rescue

e Mission Impossible: Saving variability knowledge and n
prediction model 4.13 (15K hours of computation) ‘
e Heterogeneous transfer learning: the feature space is

different
e TEAMS: transfer evolution-aware model shifting

Error variation on different versions
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Joelle Pineau “Building Reproducible, Reusable, and Robust Machine Learning Software” ICSE’19 keynote “[...] results
can be brittle to even minor perturbations in the domain or experimental procedure”

Deep Reinforcement Learning that Matters torch.manual _seed(3407) is all you need: On the influence of

random seeds in deep learning architectures for computer
vision

Peter Henderson'*, Riashat Islam'?*, Philip Bachman®
Joelle Pineaul’ Doina Pl’ecupl, David Megerl J— David Picard DAVID.PICARD@ENPC.FR

. i LIGM, Ecole des Ponts, 77455 Marnes la vallée, France
What is the magnitude of the effect
hyperparameter settings can have on baseline N
perfo rmance? In this paper I investigate the effect of random seed selection on the accuracy when using

popular deep learning architectures for computer vision. I scan a large amount of seeds (up
to 10%) on CIFAR 10 and I also scan fewer seeds on Imagenet using pre-trained models to
investigate large scale datasets. The conclusions are that even if the variance is not very
large, it is surprisingly easy to find an outlier that performs much better or much worse

How does the choice of network architecture for than the average,
the policy and value function approximation affect
performance?

DEEP VARIABILITY

How can the reward scale affect results?

Can random seeds drastically alter performance?

/ OPERATING
SYSTEM ’

How do the environment properties affect
variability in reported RL algorithm performance?

/ SOFMAREJ

L —_—

Are commonly used baseline implementations
comparable?




“Neuroimaging pipelines are known to generate different results
depending on the computing platform where they are compiled and

)
executed.
I . . Statically building programs improves reproducibility across OSes, but small
ReprOdUCIblllty Of neurOImagmg differences may still remain when dynamic libraries are loaded by static

ana|yses across Ope rating Systems executables|...]. When static builds are not an option, software heterogeneity might

be addressed using virtual machines. However, such solutions are only

Glatard et al . Front. Neuroinform . 24 workarounds: differences may still arise between static executables built on
. different OSes, or between dynamic executables executed in different VMs.
April 2015

Application Compilation (build)
(binary;code) Application
i ppl
Horary;calls I (source code)
Dynamic libraries w
System calls | Static libraries | DEEP VARIABlLl
OS kernel 3 i iy
Instructions I I I
Hardware
Cluster A Cluster B
OPERATING
Applications Freesurfer 5.3.0, build 1 Freesurfer 5.3.0, build 1 and 2 /
e a Y : SYSTEM VERSION / OpmioN  / DisTRiB.
FSL 5.0.6, build 1 FSL 5.0.6, build 1 and 2
CIVET 1.1.12-UCSF, build 1 CIVET 1.1.12-UCSF, build 1 S i :
= - ((:/_ ,_\) N \ Il \
Interpreters Python 2.4.3, bash 3.2.25, Python 2.7.5, bash 4.2.47, @ ) SOFTWARE) J
/ VARIANT /
Perl 5.8.8, tesh 6.14.00 Perl 5.18.2, tcsh 6.18.01 CompiL., \ VERSION
glibcversion 2.5 2.18 . : \;
oS CentOS 5.10 Fedora 20 2 —

Hardware x86_64 CPUs (Intel Xeon) x86_64 CPUs (Intel Xeon) & ,”:‘r;,f:‘" 7 ' / @




DEEP QUESTIONS?



